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Abstract

Generating sequential natural language de-
scriptions from graph-structured data (e.g.,
knowledge graph) is challenging, partly be-
cause of the structural differences between the
input graph and the output text. Hence, pop-
ular sequence-to-sequence models, which re-
quire serialized input, are not a natural fit
for this task. Graph neural networks, on the
other hand, can better encode the input graph
but broaden the structural gap between the en-
coder and decoder, making faithful generation
difficult. To narrow this gap, we propose DUA-
LENC, a dual encoding model that can not
only incorporate the graph structure, but can
also cater to the linear structure of the out-
put text. Empirical comparisons with strong
single-encoder baselines demonstrate that dual
encoding can significantly improve the quality
of the generated text.

1 Introduction

Data-to-text generation aims to create natural lan-
guage text to describe the input data (Reiter and
Dale, 2000). Here we focus on structured text in-
put in a particular form such as a tree or a graph.
Figure 1 shows an example where the input data is
a mini knowledge graph, and the output text is its
corresponding natural language description. Gener-
ating text from such data is helpful for many NLP
tasks, such as question answering and dialogue (He
et al., 2017; Liu et al., 2018; Moon et al., 2019).

During generation, the structure of the data as
well as the content inside the structure jointly de-
termine the generated text. For example, the direc-
tion of the edge “capital” in Figure 1 determines
that “London is the capital of U.K.” is an accurate
description, but not vice versa. Current genera-
tion methods are based on sequence-to-sequence
(Seq2Seq) encoder-decoder architecture (Sutskever
et al., 2014), which requires the input data to be

Figure 1: Illustration of the WebNLG challenge: the
source data is an RDF graph and the target output is a
text description of the graph.

serialized as a sequence, resulting in a loss of struc-
tural information.

Recent research has shown the utility of incorpo-
rating structural information during generation. By
replacing the sequential encoder with a structure-
aware graph encoder, such as a graph convolu-
tional network (GCNs) (Kipf and Welling, 2017)
or graph-state LSTMs (Song et al., 2018), the re-
sulting graph-to-sequence (Graph2Seq) methods
can encode the structural information of the input
and thus outperform Seq2Seq models on certain
tasks. However, these architectures broaden the
structural gap between the encoder and decoder.
That is, while the encoder receives the input data
as a graph, the decoder has to create the output text
as a linear chain structure.

This structural gap increases the difficulty of
establishing alignments between source and tar-
get, which is believed to play a key role in text
generation. For example, in machine translation,
pre-reordering the source words into a word or-
der that is close to that of the target sentence can
yield significant improvements in translation qual-
ity (Bisazza and Federico, 2016). This suggests a
need for an intermediate “planning” stage (Reiter
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and Dale, 2000; Puduppully et al., 2019) to help
with organizing the output.

In this work, we present a dual encoding model
that is not only aware of the input graph struc-
ture but also incorporates a content planning stage.
To encode the structural information in the input
graph, we use a GCN based graph encoder. To
narrow the ensuing structural gap, we use another
GCN-based neural planner to create a sequential
content plan of this graph, which is represented as
a re-ordered sequence of its nodes. The plan is then
encoded by an LSTM based sequential encoder.
During generation, an LSTM based decoder simul-
taneously conditions on the two encoders, which
helps it in capturing both the graph structure of the
input data and the linear structure of the plan. We
expect such a dual encoding (DUALENC) structure
can integrate the advantages of both graph and se-
quential encoders while narrowing the structural
gap present in single-encoder methods.

We evaluate the proposed planning and genera-
tion models on the WebNLG dataset (Colin et al.,
2016; Gardent et al., 2017) – a widely used bench-
mark for data-to-text generation. Experimental re-
sults show that our neural planner achieves a 15%
absolute improvement on accuracy compared to
the previous best planning method. Furthermore,
DUALENC significantly outperforms the previous
start-of-the-art on the generation task. The human
evaluation confirms that the texts generated by our
model are preferred over strong baselines.

The contributions of this paper are three-fold:
• We propose a dual encoding method to narrow

the structural gap between data encoder and
text decoder for data-to-text generation;
• We propose a neural planner, which is more

efficient and effective than previous methods;
• Experiments show that our method outper-

forms all baselines on a variety of measures.

2 Related Work

This work is inspired by two lines of research:
Seq2Seq generation and Graph2Seq generation.

2.1 Seq2Seq Generation

Traditional data-to-text generation follows a plan-
ning and realization pipeline (Reiter and Dale,
2000; Stent et al., 2004). More recent methods
use Seq2Seq architecture (Sutskever et al., 2014)
to combine planning and realization into an end-to-
end network and have achieved the state-of-the-art

on a variety of generation tasks (Lebret et al., 2016;
Trisedya et al., 2018; Juraska et al., 2018; Reed
et al., 2018). Despite the fair fluency and gram-
matical correctness, the generated text suffers from
several problems such as repetition, omission, and
unfaithfulness, which are less likely to happen in
traditional planning-and-realization frameworks.

Recent work has shown that neural models can
also benefit from an explicit planning step to alle-
viate the above-mentioned problems. The input of
these planners ranges from unstructured keyphrases
(Hua and Wang, 2019) to structured tables (Pudup-
pully et al., 2019) and graphs (Ferreira et al., 2019;
Moryossef et al., 2019a). Our work also focuses
on planning from graph data. Compared with pre-
vious methods, we show that our neural planning
method is more feasible and accurate. More im-
portantly, rather than serializing the planning and
realization stages in a pipeline, our dual encoding
method simultaneously captures information from
the original data and the corresponding plan.

2.2 Graph2Seq Generation

Graph neural networks (GNN) (Scarselli et al.,
2009) aim to learn a latent state representation for
each node in a graph by aggregating local informa-
tion from its neighbors and the connected edges.
Previous work has explored different ways of ag-
gregating this local information, such as in GCNs
(Kipf and Welling, 2017), gated graph neural net-
works (GGNNs) (Li et al., 2016), and Graph atten-
tion networks (GANs) (Veličković et al., 2018)

Several works have applied GNNs instead of
Seq2Seq models for text generation (Beck et al.,
2018; Marcheggiani and Perez-Beltrachini, 2018;
Guo et al., 2019; Li et al., 2019), and some of them
outperform Seq2Seq models. However, Damonte
and Cohen (2019) use both types of encoders and
show that GCN can help LSTM capture reentrant
structures and long-range dependencies, albeit on a
different problem than ours. Our method also uses
the two types of encoders but instead of using one
to assist the other, it combines them simultaneously
to capture their complementary effects.

3 Problem Statement

In this work we focus on text generation from RDF
data.1 The input for this task is a set of RDF triples,
where each triple (s, p, o) contains a subject, a pred-
icate, and an object. For example, (“U.K.”, “cap-

1https://www.w3.org/TR/rdf-concepts/
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Figure 2: The architecture of the proposed DUALENC model. The input triples are converted as a graph and then
fed to two GCN encoders for plan and text generation (Planner and Graph Encoder, top center). The plan is then
encoded by an LSTM network (Plan Encoder, bottom center). Finally an LSTM decoder combines the hidden
states from both the encoders to generate the text (Text Decoder, middle right).

ital”, “London”) is a RDF triple. The output is a
natural language text with one or more sentences to
describe the facts represented by this graph. Figure
1 shows an example of this task.

4 Dual Encoding Model

For a given input RDF graph, the aim of our method
is not only to capture its structural information, but
also to facilitate the information alignment between
the input and output. The first goal can be achieved
by employing a GCN encoder. To achieve the sec-
ond goal, we first serialize and re-order the nodes
of the graph as an intermediate plan using another
GCN, and then feed the plan into an LSTM en-
coder. Finally, an LSTM decoder is used to gen-
erate the output by incorporating the context repre-
sentations of both encoders. Notice that the graph
and the plan are dual representations of the same
input data. We encode them with two independent
encoders, which can provide complementary in-
formation for decoding. The architecture of our
dual encoding method is shown in Figure 2. We
describe the two encoders and the decoder in the
following three subsections.

4.1 Graph Representation and Encoding
To make it easier for GCNs to encode information
from both entities and predicates, we reconstruct
the input graph by regarding both entities and pred-
icates as nodes, which is different from Figure 1.

Formally, for each RDF triple (s, p, o), we re-
gard the s, p, and o as three kinds of nodes. s and
o are identified by their entity mentions, and p is
identified by a unique ID. That is, two entities from
different triples that have the same mentions will

be regarded as the same node. However, since we
want to use predicates to distinguish between differ-
ent triples, two predicates with the same mentions
will be regarded as separate nodes.2

Figure 3: The graph obtained from an RDF triple.

We use the same edge structure as Beck et al.
(2018). As Figure 3 shows, a triple contains four
directed edges to connect its nodes: s→ p, p→ s,
o → p, and p → o. These edges help in infor-
mation exchange between arbitrary neighbor pairs.
There is also a special self-loop edge n → n for
each node n to enable information flow between
adjacent iterations during feature aggregation.

After building the graph G = (V, E) from the
RDF data, we use a relational GCN (R-GCN)
(Schlichtkrull et al., 2018) to encode the graph and
learn a state representation hv ∈ Rd for each node
v ∈ V using the following iterative method:

ht
v = ρ

∑
r∈R

∑
u∈N r

v

1

cv,r
Wrh

(t−1)
u + br

 (1)

where h0
v = xv is the input embedding of the

node v, and ht
v is its hidden state at time-step t. We

use the average embedding of the node mentions as
xv. R is the set of all possible edge types, and N r

v

is the set of in-neighbors of node v with the edge

2For example, ‘capital’s in (U.K., capital, London) and
(U.S., capital, Washington D.C.) are different nodes.
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Figure 4: The sequential decision-making process of
the planning stage.

type as r. Wr and br are parameters for each edge
type, which allow transformations of message to
become relational-specific. cv,r = 1/|N r

v | is a nor-
malization term and ρ() is an activation function.

4.2 Planning Creation and Encoding

In the planning stage, we determine the content
plan or order of triples (identified by their predi-
cates) for text realization. For example, the content
plan for the text in Figure 1 is: “assembly→ capital
→ successor→ manufacturer ”.3

Learning a plan can be naturally regarded as a
sequential decision-making process. That is, given
a set of triples, we first determine which triple to
mention/visit first, and then select the second triple
from the remaining triples that have not been vis-
ited so far. This process continues until all the
triples have been visited. During each decision
step, the selection of the next triple can be regarded
as a classification task, where the output space is
all the remaining unvisited triples.

Figure 4 shows how our model implements this
process. We first utilize the GCN encoder described
in Section 4.1 to get the state representation of
each node. However, while obtaining a predicate’s
representation, we concatenate two extra bits to the
input feature Xt. One is to indicate whether or not
the predicate has been visited, the other to indicate
the last predicate that has been visited. After the
encoding, we get the final hidden state hri = h

(T )
ri

for each predicate ri ∈ R as its representation, and
calculate its probability of being selected as

P (ri) = softmax(hT
riWh̄R) (2)

where h̄R is the average pooling of all the predicate
embeddings. For obtaining a plan, we select the
predicate with the highest probability, append it
onto the plan sequence, and then repeat the above
process until all the predicates have been visited.

3Here we only consider the order of triples. Future plans
could explore ordering of subjects and/or objects.

After determining an order of input predicates,
we complete the plan’s triples by adding the corre-
sponding subjects and objects. To better help the
plan encoder (described below) capture the seman-
tic roles of each entity and predicate, we add special
tokens before Subjects, Predicates, and Objects as
delimiters. For example, the plan of the example
in Figure 1 will be:

<S> Aston Martin V8 <P> assembly <O> United King-
dom <S> United Kingdom <P> capital <O> London
<S> Aston Martin V8 <P> successor <O> Aston Mar-
tin Virage <S> Aston Martin Virage <P> manufacturer
<O> Aston Martin

Finally, we use an LSTM to encode the plan ob-
tained above. We choose LSTM because it excels
at capturing sequential information.

4.3 Decoding

During decoding, we adopt an LSTM-based de-
coder with an attention and copy mechanism. Since
we have two representations of the input triple-set:
the original graph and the serialized plan, we adopt
two strategies for inputting context to the decoder.

The first strategy is to only use hidden states
of the plan encoder as context. We refer to this
strategy as PLANENC.

While the serialized plan may contain some
structural information, it cannot preserve all the
information of the original graph. We therefore
propose a second strategy, DUALENC, to incorpo-
rate the information from both the graph and the
plan. More concretely, when calculating the con-
text state mt of the LSTM decoder at time step t,
we concatenate the previous hidden state zt−1 and
the two context vectors c1t and c2t , and then update
the current hidden state, zt as:

mt = MLP([zt−1; c
1
t ; c

2
t ]), (3)

zt = LSTM (zt−1, [(yt−1;mt]) , (4)

where c1t and c2t are the attention-based weighted
sum of the context memories from GCN and RNN
encoders, respectively, and yt−1 is the embedding
of the previously generated token. The initial hid-
den state z0 is the summation of the final states
from the two encoders. For the plan encoder, we
use the final state HT of LSTM as the context rep-
resentation. For the graph encoder, we use an aver-
age of all the hidden states following a two-layer
perceptron to produce the final state.
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5 Experiments

We conduct experiments to evaluate our Planner
(Section 5.2) and the overall generation system
(Section 5.3). 4

5.1 Dataset
We conduct experiments on the WebNLG dataset
(Gardent et al., 2017; Castro Ferreira et al., 2018)
used in the WebNLG challenge.5 For each instance,
the input is a set of up to 7 RDF triples from DBPe-
dia, and the output is their text descriptions. Each
triple-set is paired with a set of (up to three) human-
generated reference texts. Each reference is also
paired with the order of triples it realized. We use
them to train and evaluate our Planner. Overall,
the dataset contains 9, 674 unique triple-sets and
25, 298 text references, and is divided into training,
development, and test set. The test set contains
two subsets, the SEEN part where the instances be-
long to one of the nine domains that are seen in
the training and development set (such as Astro-
naut and Food), and the UNSEEN part where the
instances are from the other five unseen domains.
The UNSEEN part is designed to evaluate models’
generalizability to out-of-domain instances.

5.2 Experiments on Plan Generation
As previous work suggests, planning plays a cru-
cial role in text generation. We, therefore, first
investigate the performance of our planner.

5.2.1 Setup
During the graph encoding, we initialize the node
embeddings with 100-dimensional random vectors.
Our GCN model has two layers, with the hidden
size of each layer as 100. The activation function
is ReLU (Nair and Hinton, 2010). We optimize
the training objective using Adam (Kingma and Ba,
2015) with a learning rate of 0.001 and an early
stopping on the development set. The batch size is
100. We compare our results with the following six
baseline planners:
• Random: returns a random permutation of the

input triples as a plan;
• Structure-Random: returns a random traversal

over the input graph. We report the highest
score among three random strategies: random
walk, random BFS, and random DFS;

4Code is available on https://github.com/
zhaochaocs/DualEnc

5http://webnlg.loria.fr/pages/index.
html

• Step-By-Step (Moryossef et al., 2019a): a
transition-based statistical ranking method;
• Step-By-Step II (Moryossef et al., 2019b): a

DFS-based method with a neural controller;
• GRU & Transformer (Ferreira et al., 2019):

two neural Seq2Seq methods with attention;
We report the performance on three test sets:

SEEN, UNSEEN, and ALL (SEEN & UNSEEN). We
remove all one-triple instances for planner’s evalua-
tion since the planning for these instances is trivial.
Results are evaluated with accuracy and BLEU-n
(Papineni et al., 2002). For accuracy, we regard a
plan as correct only if it exactly matches one of the
human-generated plans. BLEU-n is more forgiving
than accuracy. It is also adopted in Yao et al. (2019)
for plan evaluation. Here we choose n = 2.

5.2.2 Results
Table 1 shows results of the planning experiments.
Our GCN method significantly outperforms all
the baselines (approximate randomization (Noreen,
1989; Chinchor, 1992), p < 0.05) by a large margin
on all the test sets and both measures, indicating the
effectiveness of our planner. The most competitive
baseline on ALL and UNSEEN sets is Step-By-Step,
but our method is more time-efficient. For exam-
ple, Step-By-Step needs 250 seconds to solve one
7-triple instance, but our method solves all 4928
instances in less than 10 seconds. For the SEEN set,
the most competitive models are GRU and Trans-
former. However, while their accuracies drop by
0.46 on UNSEEN test set, our method drops only
slightly by 0.02, indicating our method’s better gen-
eralization power.

We believe that this superior generalization ca-
pacity comes from the modeling of the graph struc-
ture. While the surface forms of triples in UNSEEN

set do not overlap with those in the training data,
the graph-level structural features are still shared,
making it a key factor for generalization. GRU
and Transformer linearize the graph as a sequential
input, making them miss the structural informa-
tion and resulting in poorer generalization capacity.
Step-By-Step II also considers graph structure, but
our model achieves better performance because
we use GCN to encode the node representation,
which can aggregate richer information from both
the graph structure and the surface information.

We also investigated the effect of the graph size
on the plan quality. In Figure 5, we separate the
ALL test set into six subsets according to the size
of input triple-sets, to reflect the model’s capacity

https://github.com/zhaochaocs/DualEnc
https://github.com/zhaochaocs/DualEnc
http://webnlg.loria.fr/pages/index.html
http://webnlg.loria.fr/pages/index.html
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Accuracy BLEU-2

SEEN UNSEEN ALL SEEN UNSEEN ALL

Random 0.28 0.34 0.31 54.1 62.1 57.9
Structure-random 0.32 0.38 0.34 56.6 62.9 59.5

Transformer (Ferreira et al., 2019) 0.56 0.09 0.34 74.3 20.9 49.3
GRU (Ferreira et al., 2019) 0.56 0.10 0.35 75.8 25.4 52.2
Step-By-Step II (Moryossef et al., 2019b) 0.45 0.44 0.44 67.7 67.3 67.5
Step-By-Step (Moryossef et al., 2019a) 0.49 0.44 0.47 73.2 68.0 70.8

GCN 0.63 0.61 0.62 80.8 79.3 80.1

Table 1: Planning results of three test sets evaluated by accuracy and BLEU-2.
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Figure 5: Fine-grained planning results for the ALL
test set. Our method outperforms all the baselines re-
gardless of the triple size.

at a fine-grained level. Fewer input triples make
the planning task easier, while the 7-triple case is
the most difficult one. The accuracy of seven out of
eight baselines drops to around 0 in this case, while
our method achieves an accuracy of 0.19. Besides
this, our method consistently outperforms all the
baselines for all the triple-set sizes.

5.3 Experiments on Text Generation

This section investigates the ability of our models
to improve the generation quality.

5.3.1 Setup
We implement the generator based on the Open-
NMT toolkit.6 For the graph encoder, we use a
similar setting as above. Since the generation task
is more complicated than planning, we increase the
dimension of the input and the hidden states to 256.
The plan encoder is a 2-layer bidirectional LSTM
with the same dimension setting of the GCN to ease
the information fusion. During encoding, for UN-
SEEN test set, we adopt delexicalization (Gardent
et al., 2017) to enhance the model’s generalizability
to unseen domains.

We use Adam with a batch size of 64. The initial
learning rate is set to 0.001 and is decayed with a
rate of 0.7 after the eighth epoch. We continue the

6https://github.com/OpenNMT/OpenNMT-py

training until the perplexity of the development set
does not decrease. We also apply dropout on the
decoding output layer with a rate of 0.3.

The quality of the generated text (as well as those
of the baselines) is evaluated through a variety of
automatic measures, such as BLEU, METEOR,
and TER, which are strictly the same as those ap-
plied in the official challenge.7 Following Marcheg-
giani and Perez-Beltrachini (2018), we report aver-
aged performances over ten runs of the models.

We compare our method with the top systems of
the WebNLG challenge and published state-of-the-
art systems. The WebNLG systems are:
• ADAPT: a neural system with sub-word repre-

sentations to deal with rare words and sparsity.
• TILB-SMT: a statistical machine translation

method using Moses and delexicalization.
• MELBOURNE: a Seq2Seq model with en-

riched delexicalization from DBPedia.
The published research models are:
• GTR-LSTM (Trisedya et al., 2018): a graph-

based triple encoder;
• GCN-EC (Marcheggiani and Perez-

Beltrachini, 2018): a GCN-based triple
encoder with glove embedding and copy;
• GRU & Transformer (Ferreira et al., 2019):

two pipeline methods with 5 sequential steps
and GRU or Transformer as the encoder;
• STEP-BY-STEP (Moryossef et al., 2019a): a

pipeline method that generates the text from
plans with OpenNMT and a copy mechanism.

5.3.2 Qualitative Results
Table 2 shows the results of the automatic eval-
uation on the generation task. Our PLANENC

achieves the best performance on BLEU and TER,
while DUALENC performs best under METEOR.
Both PLANENC and DUALENC significantly out-

7That is why some of the numbers in our table are not
exactly the same as those in the cited works.

https://github.com/OpenNMT/OpenNMT-py
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BLEU (↑) METEOR (↑) TER (↓)

SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL

TILB-SMT 54.29 29.88 44.28 0.42 0.33 0.38 0.47 0.61 0.53
ADAPT 60.59 10.53 31.06 0.44 0.19 0.31 0.37 1.40 0.84
MELBOURNE 54.52 33.27 45.13 0.41 0.33 0.37 0.40 0.55 0.47
GTR-LSTM (2018) 54.00 29.20 37.10 0.37 0.28 0.31 0.45 0.60 0.55
GCN-EC (2018) 55.90 - - 0.39 - - 0.41 - -
GRU (2019) 56.09 25.12 42.73 0.42 0.22 0.33 0.39 0.64 0.51
Transformer (2019) 56.28 23.04 42.41 0.42 0.21 0.32 0.39 0.63 0.50
Step-By-Step (2019a) 53.30 34.41 47.24 0.44 0.34 0.39 0.47 0.56 0.51
PLANENC 64.42 38.23 52.78 0.45 0.37 0.41 0.33 0.53 0.42
DUALENC 63.45 36.73 51.42 0.46 0.37 0.41 0.34 0.55 0.44

Table 2: Generation results evaluated by BLEU, METEOR, and TER. We compare our methods with different
generation systems (SMT, Sequential NMT, Graph NMT, Pipeline). Both of our methods outperform all the
baselines on all three measures. We highlight both results if there is no significant difference.

perform the previous state-of-the-art (bootstrapping
(Koehn and Monz, 2006), p < 0.05). For the SEEN

part, while no existing published work performed
better than ADAPT, our PLANENC achieves a 3.83
performance gain on BLEU. It also outperforms
the single GCN encoder by 8.52 BLEU, which
confirms the advantage of the planning stage for
bridging the structural gap between the encoder
and decoder. For the UNSEEN part, PLANENC and
DUALENC improve BLEU by 3.82 and 2.32 com-
pared with the previous state-of-the-art. While it
is difficult to distinguish the performance of DUA-
LENC and PLANENC by automatic measures, our
human experiments (see Section 5.3.4) show that
dual encoding generates better text compared with
PLANENC.

When comparing with the pipeline methods, one
difference from the data perspective is how to ob-
tain the plans of each instance to train the planner.
While Step-By-Step uses heuristic string match-
ing to extract plans from the referenced sentences,
other methods (GRU and transformer), as well as
ours, use plans provided in the enriched WebNLG
dataset (Castro Ferreira et al., 2018). However,
Step-By-Step reported worse BLEU results on
these plans.

5.3.3 Ablation Study
To further analyze what factors contribute to the
performance gain, we conduct an ablation study by
removing the following components:
• Copy mechanism: The text is generated with-

out copying from the source;
• Triple planning: The input triples are shuf-

fled before feeding into RNN, but the (s, p, o)

Methods BLEU (↑) METEOR (↑) TER (↓)

PLANENC 64.42 ± 0.17 0.45 ± 0.00 0.33 ± 0.00

-plan 57.81 ± 0.82 0.40 ± 0.00 0.40 ± 0.01
-copy 61.64 ± 0.53 0.43 ± 0.01 0.36 ± 0.01
-mention 61.49 ± 0.35 0.43 ± 0.00 0.36 ± 0.00
-delimiter 63.26 ± 0.33 0.44 ± 0.00 0.34 ± 0.00

Table 3: Results of the ablation study.

inside a triple are not shuffled.
• Entity mentions: We join the words in a node

mention with underlines (e.g., Aston Martin
instead of Aston Martin).
• Plan delimiter: We concatenate the (s, p, o)

without separating them with role delimiters.

We conduct the ablation study on the SEEN test-
set using our PLANENC. Table 3 shows the average
performance and standard deviations. Compared
with PLANENC, replacing plans with a random
sequence of triples hurts the BLEU score by 6.61
points, indicating that the accuracy of planning is
essential for the quality of generation. Our plan-
ning also makes the model more stable to random
seeds (by decreasing the standard deviation from
0.82 to 0.17). Removing the copy mechanism also
decreases the BLEU score by 2.78 points. It demon-
strates the effectiveness of copying words from the
source triples rather than generating them from the
vocabulary set. Removing the mention information,
decreases the BLEU score by 2.93. It reflects two
benefits of word mentions: to alleviate data sparsity
and to coordinate with the copy mechanism. How-
ever, removing delimiters does not affect the BLEU
much. Intuitively, we expected the delimiters to
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Absolute(%) Pairwise(%)

CVGE FAITH CVGE FAITH FLCY ALL

MELBOURNE 83.0 75.2 -35.0 -42.5 -38.8 -68.8

STEP 96.1 89.3 5.0 -3.7 -45.0 -55.0
E2E-TRANS 85.5 78.0 -21.2 -32.5 -21.2 -46.3
GCN 79.8 76.8 -48.7 -50.0 -26.3 -67.5

PLANENC 92.3 88.2 -7.5 -12.5 -7.5 -21.2
DUALENC 94.5 91.8 – – – –

Table 4: Results of human evaluation. DUALENC out-
performs most of the baselines on all measures.

help the LSTM capture the boundaries and seman-
tic roles of each node, but the ablation study does
not support it. We provide an example in Table 5
to show that the LSTM indeed has trouble learning
such semantic roles.

5.3.4 Human Evaluation

Automatic measures are based on lexical similar-
ities and are not good measures of text quality in
general. We therefore further conduct a human
evaluation on Amazon Mechanical Turk to better
access the quality of the generated texts. We eval-
uate the results for MELBOURNE, Step-By-Step,
Transformer, GCN, as well as our PLANENC and
DUALENC. We randomly select 80 test instances
(440 triples in total) with the size of tripleset be-
tween 4 to 7, since they are more challenging than
those with fewer triples. Then we evaluate the gen-
eration quality of each system with the following
three measures:
• Coverage: the percentage of triples that are

covered by the generated text (all < s, p, o >
values in the triples are realized);
• Faithfulness: the percentage of triples that

are faithfully described by the text (the text
correctly expresses the predicate and also the
subject and object as its arguments. No sub-
stitutions or hallucinations);
• Fluency: a measure of the fluency or natural-

ness of the generated text.
For coverage and faithfulness, workers are asked

to check each triple of an instance, and judge
whether the triple is covered and faithfully de-
scribed by the generated text. For fluency, we ask
another group of workers to compare between two
outputs of the same instance and identify which
one is more fluent. Table 5 shows examples where
these qualities are compromised.

In Table 4, we report the absolute scores of

coverage and faithfulness, which range from 0
to 100%. We also provide pairwise scores of all
three measures by comparing the outputs of DUA-
LENC with each of the other five systems. We
report the percentage of instances that were judged
to be worse/better/same than those of DUALENC,
yielding a score ranging from -100% (unanimously
worse) to 100% (unanimously better). For exam-
ple, MELBOURNE performs better/worse/same
than DUALENC for 10%/45%/45% of the instances,
yielding a pairwise score as 10%-45%=-0.35%. We
also report an overall pairwise score combining all
three measures. For each instance, the overall score
of one output is higher than the other iff it outper-
forms the other on at least one of the three measures
and has a better or equal vote on the other two.

Our PLANENC and DUALENC outperform most
of the baselines on all of the measures by a large
margin (approximate randomization, p < 0.05. ),
which is consistent with the automatic results. The
only exception is Step-By-Step, which has high
Coverage and Faithfulness (not significant). It first
separates the input triples into smaller subsets and
then realizes them separately. This greatly reduces
the difficulty of long-term generation but at the ex-
pense of Fluency (worst among all the baselines).
GCN does not perform well on Coverage, which
demonstrates that the structural gap between encod-
ing and decoding indeed makes generation more
difficult. However, it has the smallest difference
between Coverage and Faithfulness among all the
baselines, indicating that the fidelity of generation
can benefit from the encoding of graph-level struc-
tural information. By combining GCN and PLA-
NENC, our DUALENC incorporates the advantages
of both encoders while ameliorating their weak-
nesses, and therefore achieves the best OVERALL

performance on human evaluation.

5.4 Qualitative Analysis

Table 5 shows examples of generated texts by var-
ious systems for an input of six triples. Colored
fonts represent missing, unfaithful, and unfluent in-
formation. For example, PLANENC misses “Buzz
Aldrin” and also wrongly expresses the subject of
“retirement” as “Frank Borman”, indicating that
LSTM is less powerful at capturing the semantic
roles of entities. This disadvantage can be well
complemented by GCN, which is designed to cap-
ture the graph structure and the relations between
entities. Hence, by incorporating information from
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Tripleset
(William Anders | birthPlace | British Hong Kong), (William Anders | was a crew member of | Apollo 8),
(Apollo 8 | crewMembers | Frank Borman), (Apollo 8 | backup pilot | Buzz Aldrin), (Apollo 8 | operator |
NASA), (William Anders | dateOfRetirement | 1969-09-01)

MELBOURNE william anders (born in british hong kong) was a crew member of apollo 8’ s apollo 8 8 mission along with
buzz aldrin as backup pilot and buzz aldrin on 1969-09-01 . [Frank Borman, NASA]

Step-by-Step william anders was a crew member of apollo 8 operated by nasa. apollo 8’ s backup pilot was buzz aldrin and
frank borman. william anders was born in british hong kong. william anders retired on september 01st, 1969.

PLANENC william anders was born in british hong kong and was a crew member of nasa’ s apollo 8. frank borman was a
crew members of apollo 8 and he retired on september 1st, 1969 . [Buzz Aldrin]

DUALENC william anders was born in british hong kong and served as a crew member of nasa’ s apollo 8 along with frank
borman and backup pilot buzz aldrin. he retired on september 1st, 1969 .

Reference william anders was born in british hong kong and served as a crew member on apollo 8 along with frank
borman. nasa operated apollo 8, where buzz aldrin was a back up pilot. anders retired on sept 1, 1969 .

Table 5: Sample texts generated by our methods and baselines, compared with a human-provided reference. We
highlight in different color the [missing], unfaithful, and unfluent parts of each text. Only the results of our
DUALENC correctly mention all the input triples.

both GCN and LSTM, DUALENC correctly ex-
presses the subject argument of “retirement”.

6 Conclusion

This paper proposes DUALENC, a dual encoding
method to bridge the structural gap between en-
coder and decoder for data-to-text generation. We
use GCN encoders to capture the structural infor-
mation of the data, which is essential for accurate
planning and faithful generation. We also introduce
an intermediate content planning stage to serialize
the data and then encode it with an LSTM network.
This serialized plan is more compatible with the
output sequence, making the information alignment
between the input and output easier. Experiments
on WebNLG dataset demonstrate the effectiveness
of our planner and generator by outperforming the
previous state-of-the-art by a large margin. Future
work will validate the effectiveness of this method
on more varied data-to-text generation tasks.
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